

Object Persistence

Jerome David
Université Grenoble Alpes

Master MIASHS
2017-2018

Data Access Object

● This is a design pattern allowing to abstract and
to encapsulate persistence mechanisms

Application Object:
servlet, bean for JSF, etc.

Object from the data model:
User, Client, Bill, etc.

Object that encapsulates
databases queries

Object that represent the
database

Principles

● All accesses (i.e. queries)
are encapsulated into the
DAO

● Calls to DAO methods are
made only from business
objects (not from data
objects (TransferObjects)

● Basic DAO operations are
– Create, Read, Update,

Delete

Example
Client

+ int id
+ String name
+ String address
+ String city
+ List<Order> orders

+ int getAmountOrders()
+ hasBuy(Item p)

<<interface>>
ClientDAO

+ create(Client c)
+ Client read(int id)
+ update(Client c)
+ delete(Client c)
+ List<Client> findClientByCity(String city)

ClientDAOImplSQL

- Connection connect
- String dbURL

+ create(Client c)
+ Client read(int id)
+ update(Client c)
+ delete(Client c)
+ List<Client> findClientByCity(String city)

Why we define a DAO
interface and not only
the implementation?

Manage several DAO
implementations

● Abstracting DAO allows to manage several kinds of
persistence frameworks

● We have a generic interface for DAO and one
implementation for each persistence technology used
(RDB, XML, RDF triplestore, KeyValue Store)

● If we change the persistence technology we only
have to redefine a new implementation of the DAO
and the business classes does not need to be
changed.

DAO Factories

DAO interfaces, one
for each class of the
data model

DAO implementation,
one for each class of
the data model and
for each kind of
persistence

Abstract factory that defines abstract methods
DAO1 getDAO1(), etc.

Concrete factories
that implements the
abstracts methods

DAO: Pros and Cons

+ It allows independence between application
logic and the persistence framework to be used
– It is easier to change the persistence technology

– The code is more maintainable

- It adds a bit of overhead when we code an
application
– But there are tools that allows to automate their

creation

Java Persistence API

● JPA provides an object/relational mapping
facility.
– It consists in automatically maps objects to

database records.

● It consists of
– The API itself

– A query language: JPQL

– The Java Persistence Criteria API

– Object/relational mapping metadata

Entities

● Entities are the classes of the data model
– An entity class is usually a table in the database and each instance of an entity

class is a row

● To make a class an Entity class, we have to
– Annotate the class with javax.persistence.Entity

– Declare a primary key, i.e. an instance attribute with the annotation
javax.persistence.Id

– To not make the class final
● it will be automatically extended by JPA

– The class has to be a bean
● At least a public or protected no-argument constructor
● Instance attributes must be private
● And accessible with getters and/or setters

Persistent attributes

● To be stored the type of an instance attribute
has to be:
– A primitive type

– A String

– Serializable type

– Enumeration

– An entity type (or collection of entity type)

– An embeddable class

Attribute constraints

● We can add constraints on attributes using annotations
– Constraints are in the package javax.validation.constraints

● For instance:
– @NotNull

– @Pattern(regexp = "[a-z0-9!#$%&'*+/=?^_`{|}~-]+(?:\\."

 + "[a-z0-9!#$%&'*+/=?^_`{|}~-]+)*@"

 + "(?:[a-z0-9](?:[a-z0-9-]*[a-z0-9])?\\.)+
[a-z0-9]"

 + "(?:[a-z0-9-]*[a-z0-9])?",

 message = "{invalid.email}")

– @Column(unique=true)

Entity relationships

● Entities classes can be in relation.

● There are several multiplicities
– javax.persistence.OneToOne

●

– javax.persistence.OneToMany

● Example: a Person can have several Phone

– javax.persistence.ManyToOne

● Example: a Phone belongs to only one Person

– javax.persistence.ManyToMany

● Example: A Student follows several Course and a Course is followed
by several Student

Direction of relationships

● Relations between two classes can be:
– Unidirectional: only one of the two classes in relation have a reference to

the other

– Bidirectional: both the two classes in relation have a reference to the
other.

● The directions define how we can navigate between entities using
their relationships

● When relations are bidirectional, the inverse side of the relation has
to refer to the owning side using mappedBy parameter
– For OneToOne and ManyToMany relation, you are free to choose the

owning side

– For ManyToOne and OneToMany the owning side is Many

Examples
@Entity
public class Person implements Serializable {
 @Id
 private long id;

 @NotNull
 private String lastName;

 @NotNull
 private String firstName;

 @OneToMany(mappedBy="owner")
 Collection<Dog> dogs;
}

@Entity
class Dog implements Serializable {
 @Id
 private long id;

 private String name;

 @ManyToOne
 private Person owner;

 @OneToOne
 private Collar collar;

 @ManyToMany
 private Collection<Flea> friends;
}

@Entity
public class Collar implements Serializable {

 @Id
 private long id;

 private String phoneNumber;

 @OneToOne(mappedBy="collar")
 private Dog dog;
}

@Entity
public class Flea {
 @Id
 private long id;

 @ManyToMany(mappedBy="friends")
 private Collection<Dog> houses;
}

